

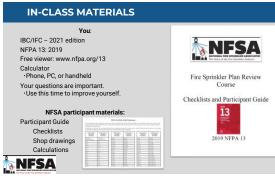
FIRE SPRINKLER PLAN REVIEW

1

COPYRIGHT

This presentation is protected by US and international copyright laws. Any reproduction, recording, distribution, display, or use of the presentation without written permission of the National Fire Sprinkler Association is prohibited.

©National Fire Sprinkler Association 2024


2

REFERENCES

3

4

LEARNING OBJECTIVES

By the end of this program, you will be able to:

- 1. Apply the requirements of plans examination according to NFPA 13, building and fire codes.
- 2. Discuss the importance of a systematic review process.
- Identify the documents required for a complete plan review process.
- Evaluate the hydraulic calculations presented with a set of working plans submitted for review and approval.

5

MODULE 1 – INTRODUCTION AND OVERVIEW

NFSA

6

ASSUMPTIONS

Design code and judgements already made. Sprinklered building Start at shop drawings, cut sheets, calculations

7

WHAT IS A FIRE SPRINKLER PLANS EXAMINER?

Fire sprinkler plans examination is a process where the municipality or the authority having jurisdiction is obligated to examine a proposed fire sprinkler system and compare its proposed installation to the laws and ordinances enforced.

COMMON ACRONYMS FOR FIRE SPRINKLER PLANS EXAMINERS

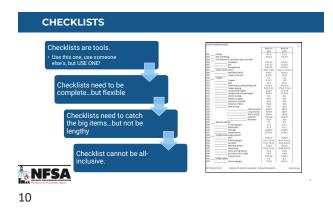
 GPM – gallons per minute

 PSI – pounds per square inch

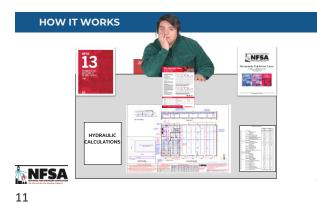
 FDC – fire department connection

 SDC – seismic design category

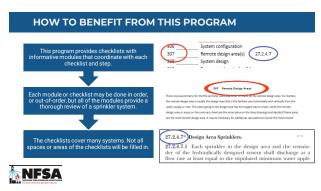
 SR – standard response

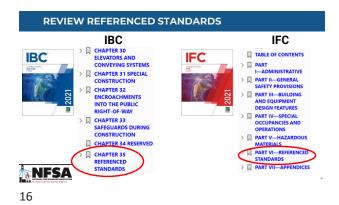

 QR – quick response

 CMSA – Control Mode Specific Application


 ESFR – Early Suppression Fast Response

NFSA


9



MODULE 2 – OVERVIEW OF CODES AND STANDARDS (ICC/NFPA 13/13R/13D)

Fire Sprinkler System Plan Review

NFSA

15

CODES AND STANDARDS

Model codes

•Legally adopted – "what" must be done •Does include some important sprinkler installation requirements.

Standards •Adopted by reference – "how" to do it

17


NFSA

NFPA 13 SCOPE

NFPA 13 is a sprinkler design and installation standard focused on both life safety and property protection for commercial and residential occupancies

Scope: Minimum requirements for the design and installation of automatic fire sprinkler systems and exposure protection sprinkler systems

Purpose: Reasonable degree of protection for life and property

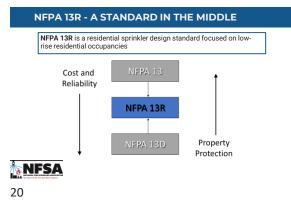
Based upon sound engineering principals, test data and experience

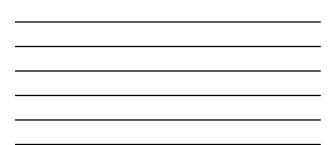
18

NFPA 13R SCOPE

NFPA 13R is a residential sprinkler design standard focused on lowrise residential occupancies

Scope: Design and installation of sprinklers in residential occupancies up to 4-stories and 60 ft in height Purpose: Aids in control and detection of residential fires and provides:


 Improved protection "against injury and life loss, and property protection"


•Prevent flashover in room of fire origin (where sprinklered) •Improve chance for occupants to escape or be evacuated

19

<u>,</u>

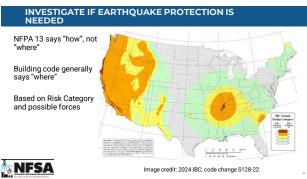
NFPA 13D SCOPE

NFPA 13D is a residential sprinkler design standard focused on oneand two-family dwellings and manufactured homes. The intent is to provide an affordable sprinkler system in homes while maintaining a high level of life safety.

Scope: Design and installation and maintenance of sprinklers in

one- and two-family dwellings, manufactured homes and townhouses **Purpose:** Aids in control and detection of residential fires and provides:

·Improved protection "against injury and life loss"


·Prevent flashover in room of fire origin (where sprinklered)

·Improve chance for occupants to escape or be evacuated

21

22

EARTHQUAKE PROTECTION DETERMINATION

NFSA

23

•Model building codes reference ASCE 7, Minimum Design Loads for Buildings and Other Structures

•ASCE 7 and Fire Sprinkler

-ASCE 7 and Fire Sprinkler Systems
-Seismic Design Category (SDC)
-A & B are exempt
-C, D, F, and F need protection
-SDC is the same for the building and systems contained in the building.

NFPA 13 – CHAPTERS 1-4

1. Administration

2. Referenced Publications

3. Definitions

4. General Requirements

24

NFPA 13 - CHAPTER 4

Identifying the hazard Classification of:

 Occupancy hazards •Stored commodities •Pallet types

NFSA

25

NFPA 13 - CHAPTERS 6-11

6. Installation Underground Piping

7. Requirements for System Components

and Hardware

8. System Types and Requirements

9. Sprinkler Location Requirements

10. Installation Requirements for Standard Pendent, Upright and Sidewall Spray Sprinklers

11. Installation Requirements for Extended Coverage Upright, Pendent and Sidewall Spray Sprinklers

26

NFPA 13 - CHAPTERS 12-15

12. Installation Requirements for Residential Sprinklers

13. Installation Requirements for CMSA Sprinklers

14. Installation Requirements for Early Suppression Fast-**Response Sprinklers**

15. Installation Requirements for Special Sprinklers

27

NFPA 13 - CHAPTERS 16-19

16. Installation of Piping, Valves, and Appurtenances 17. Installation Requirements for Hanging and Support of

System Piping

18. Installation Requirements for Seismic Protection

19. Design Approaches

28

NFPA 13 - CHAPTERS 20-25

20. General Requirements for Storage

21. Protection of High Piled Storage using CMDA

Sprinklers 22. Protection of High Piled Storage using CMSA

Sprinklers

23. ESFR Requirements for Storage Applications

24. Alternative Sprinkler System Designs for Chapters 20-

25

25. Protection of Rack Storage Using In-Rack Sprinklers

NFSA

29

NFPA 13 - CHAPTERS 26-32

26. Special Designs of Storage Protection

27. Special Occupancy Requirements

28. Plans and Calculations

29. System Acceptance

30. Existing System Modifications

31. Marine Systems

32. System Inspection, Testing, and Maintenance

30

ORGANIZATION OF NFPA 13 SECTIONS WITHIN CHAPTERS

Within each chapter, information starts with the most general information and proceeds to the least general (most specific)

Most popular items are first followed by other items in descending order of popularity

NFSA

31

EXAMPLE: CHAPTER 8 OF NFPA 13

- Wet Pipe Systems
- 8.2 Dry Pipe Systems

8.1

- 8.3 Preaction and Deluge Systems.
- 8.4 Combined...Systems...Piers
- 8.5 Multi-Cycle Systems
- 8.6 Antifreeze Systems
- 8.7 Systems with Non-Fire Connection
- 8.8 Exposure Protection....
- 8.9 Refrigerated Spaces
- 8.10 Cooking Equipment
- 8.11 Additives and Coatings

NFSA

32

TYPES OF SPRINKLER SYSTEMS

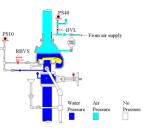
•Wet-pipe •Dry-pipe •Pre-action •Deluge

42

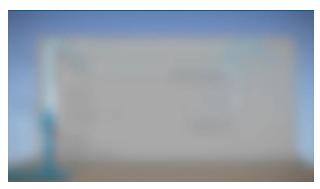
WET PIPE SYSTEM

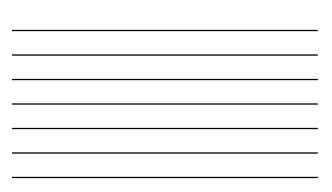
•Most common •Most reliable •Least expensive •Piping always filled with water •Upon head activation, water is immediately discharged •Each sprinkler activates independently by heat •Cannot be used in areas subject to freezing

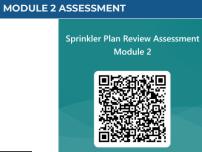
43



44


DRY PIPE SYSTEM


 Less common
 Piping always filled compressed gas above the dry-pipe valve
 Upon head activation, water is discharged after compressed gas
 Each sprinkler activates independently
 Designed to be used in areas subject to freezing



45

46

47

48

CHECKLIST

This modules covers several steps in the following checklists:

Submittal checklist

		NFPA 13	NFPA 13
		2016	2019
105	Architectural plans	IEC 107-2-2	IBC 107.2.1
102	Owner's certificate	4.3, 23.1.4	42,27,1,4
01	Water supply treatment	24.1.5	515
104	Shop drawings	23.1.3	27.1.3
105	Pipe schedule system	23.7	27.5
05	Hydraulic calculations	23.3	27.4
27	Water supply	23.2	4.6
108	Summary sheet	23352	27.4.5.2
109	Graph sheet	23.3.5.3	27.4.5.3
10	Supply analysis	23.3.5.4	27.4.5.4
11	Node analysis	23355	27.4.5.5
12	Detailed worksheet	23.3.5.6	27,4,5,6
13	Cut sheets	23.1.4	27.1.4
14	Sprinklars		
15	Piping		
15	Equipment		
17	Hangers		
18	Seismic bracing		
119	Codes and standards	IBC 107.2.1	IBC 107.2.1
120	Codes		
21	Standards		
22	Other		
23	Use group	IEC 302.1	IBC 302.1
24	Classification of hazards	5.1	4.3
25	Commodity	5.6	20.3
26	System protection area limitation	8.2	4.5

NFSA

49

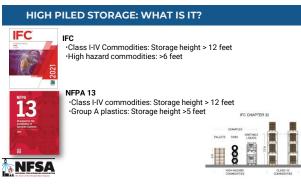
OCCUPANCY HAZARD AND COMMODITY CLASSIFICATION

IBC

NFPA 13

Ccupancy classification is the formal designation of the primary purpose of the building, structure, or portion thereof

50


Occupancy classification for this standard shall relate to sprinkler design, installation, and water supply requirements only

OWNER'S CERTIFICATE

52

53

HIGH PILED STORAGE: WHAT IS IT?

NFSA

55

 High Piled Storage: Storage of combustible materials closely packed piles of combustible materials on pallets, in racks, or on shelves where the top of the storage is greater than 12 feet in height.

Where required by the FCO, high piled storage also includes high-hazard commodities...where the top of storage is greater than 6 feet in height

HIGH PILED STORAGE: FIRE PROTECTION

See Chapter 32Fire protection: See Table 3206.2

NFSA

56

NFPA 13: LOW-PILED STORAGE

•Solid-piled, palletized, rack storage, bin box, and shelf storage up to 12 ft in height (Section 3.9.1.17)

57

NFPA 13: MISCELLANEOUS STORAGE

Storage that does not:
 Exceed 12 ft. in height

·Incidental to another occupancy use group

•Does not constitute more than 10% of the building area or 4,000 sq. ft. of the sprinklered area, whichever is greater

•Does not exceed 1,000 sq. ft. in one pile or area, and is separated from other storage areas by at least 25 ft.

58

CODES VS. STANDARDS

✓ Storage Layout Floor Plan (2018 IFC) & Maintenance (2021 IFC)

Life Safety Requirements

✓ Fire Department Access

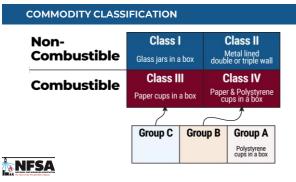
roads

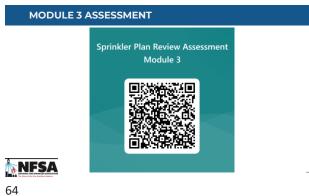
✓ Fire Department Access Doors

59

13

✓ What is the height of the storage?


✓ Building height?


✓ What type of sprinkler is being used?

✓ Special Commodity?

61

CHECKLIST

This modules covers several steps in the following checklists:

Systems review checklist

Design review checklist

66

LISTING

·All components and equipment shall be listed. ·The submitted cut sheet should verify listing.

·Exceptions:

Signage

•Valve components •Pipe and fittings when manufactured to Table 6.3.1.1 and 6.4.1 •All threaded rod

·Drain piping and drain valves

67

UNDERGROUND PIPE: NFPA 13

•Review Table 6.1.1.1 in NFPA 13, 2019 edition Ductile Iron •Concrete •Plastic •Brass Copper Stainless steel

68

ABOVEGROUND PIPE: NFPA 13

•Review NFPA 13 Section 7.3.1 and Table 7.3.1.1

TYPES OF PIPE MATERIALS

 Steel Pipe Black Galvanized Stainless

·Copper Tube •Nonmetallic Pipe •CPVC •Polypropylene •PEX (NFPA 13D only)

72

VALVES: CONTROL VALVES

•Control •Turn systems on and off

•Directional •Allow water to flow in one direction •Check valves

•Double check valves assemblies •Reduced pressure (zone) backflow prevention assembly (RP or RPZ)

82

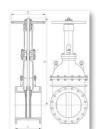
VALVES: CONTROL VALVES

·At least one for each water supply

·Must be listed

Must be insted
Must be indicating
Outside Screw and Yoke (OS&Y) (a type of gate valve)
Post Indicator Valve (PIV) (also a type of gate valve)
Wall Post Indicator Valve (WPIV) (also a gate valve)
Butterfly Valves
Shall NOT close in lese than 5 seconds

Shall NOT close in less than 5 seconds



83

NFSA

84

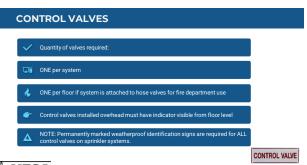
NFSA

85

WALL POST INDICATOR VALVE (WPIV)

NFSA

86


BUTTERFLY VALVE

Indicator rotates with inner portion of valve to show whether the valve is open or closed.

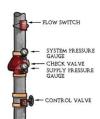
Portion of the valve that stops the flow of water is always in the waterway. When rotated, it allows flow, but still causes friction loss and turbulence.

NFSA

88

DIRECTIONAL VALVES

·Required on all systems

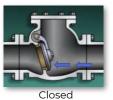

•Must be listed

·Must be installed horizontal or vertical according to their listing

·Alarm check valves are acceptable as

directional valves

•Control valves shall be installed on each side of the directional valve when the system is served by multiple water supplies



89

SWING CHECK VALVE

90

INTERNALLY LOADED CHECK VALVE CUT-AWAY

NFSA

91

BACKFLOW PREVENTERS

 Installed to keep the water in the sprinkler system from going back into the public water system
 Types:

-Types: -Double Check Valve -Reduced Pressure Zone (RPZ) -Air Gap

NFSA

92

BACKFLOW PREVENTION ASSEMBLY

NFSA

93

MODULE 4 ASSESSMENT

95

MODULE 6 – BASIC OVERVIEW & INSTALLATION REQUIREMENTS OF SPRINKLERS

Fire Sprinkler System Plan Review

141

CHECKLIST

This modules covers several steps in the following checklists:

- Positioning checklist
- Design review checklist

				Min 20	66	189A 22 2669 13.3.3.1.1		
ter de	ter demand Jecolty/Vera curves				112313 Pe112531			
	Canada min ban			11.2		Pg 19333	·	
Dealth	ning Sectors C	Sarbbel: 202	10/10 13					
20	INFRASI	standard Upright/ Pendett	Sdeval	totended Upright/ Pendett	Extended Coverage Sidewall	feader-bail	CM5A	1.04
		A	8	C	0	6		G
500	Area of coverage	10.3.4	10.3,3	112.1	11.8.1	111.61	1825	14.2
512	Distance of speniales	20,3,5,1	15.84.1	112.81	11.34.1	111.7.1	182.61	14.2.8
509	Maximum dotance from wells	10.2.5.2	18.842	112.92	11.84.2	8173	182.62	14.2.5
504	Molinum dotance from wells	20.2.5.3	18.54.5	112.53	11.34.3	11.53	15.2.6.3	3423
505	toker ceding	30.2.8.1	18.551	11241	11.3.5.1	12.1.8	19171	14.2.35
506	Obstruction less than 18 inches	10173	18.3.62	11253	11.3.6.3	P121102 5123132	19797	1421
507	Obstruction greater than 18 inches	20173	11.3.63	11253	11.363	P-121103 9121113	13233	
508	Clearance to storage	10.3.8	12.8.7	112.6	11.87	344	18.2.9	14.3.3
509	Stylights	3.3.39	93.16	2,3,30	33.30	93.16	9.3.29	9.3.2

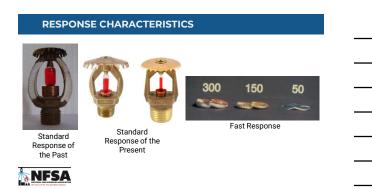
142

BASIC REQUIREMENTS

Temperature Classification			Glass Bulb Color	Frame Color (Soldered Link)	
Ordinary	135 - 170	100	Orange or Red	Uncolored or Black	
Intermediate	175 - 225	150	Yellow or Green	White	
High	250 - 300	225	Blue	Blue	
Extra High	325 - 375	300	Purple	Red	
Very Extra High	400 - 475	375	Black	Green	
Ultra High	500 - 575	475	Black	Orange	
Ultra High	650	625	Black	Orange	

143

RESPONSE CHARACTERISTICS


Standard Response

Fast Response

Quick Response

- Quick Response Extended Coverage
- ESFRResidential
- **NFSA**

149

150

RESPONSE LIMITATIONS

- Light Hazard must use quick response or residential sprinklers
- · Existing systems (or modifications to existing systems) may use standard response

· Quick response is not permitted

for Extra Hazard

151

DEFLECTOR STYLE

Sprinklers can be made to distribute water to different places with different droplet sizes.

152

APPLICATION OF STANDARD UPRIGHT AND PENDENT SPRAY SPRINKLERS

•Upright and pendent spray sprinklers are permitted in all: •Hazard classification •LH, OH, EH ·Types of construction •Non-combustible •Limited combustible •Combustible Obstructed Unobstructed

153

APPLICATION OF SIDEWALL SPRINKLERS

•Light hazard •Smooth, horizontal or sloped, flat ceilings

•Ordinary hazard •Smooth, flat ceilings when listed.

Overhead doors

•Not permitted to be installed back-to-back unless separated by a lintel or soffit.

154

UH OH!

 Sidewall sprinklers cannot be installed back-to-back without a lintel or soffit.

• Section 10.3.4.1.4

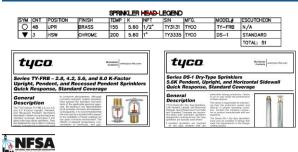
155

APPLICATION OF SPECIAL SPRINKLERS

·When evaluated and listed ·Window sprinklers ·Combustible concealed Attic sprinklers Institutional Conventional

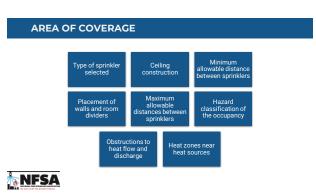
156

ORIFICE SIZE


The larger the orifice, the easier it is for water to discharge from the sprinkler

Orifice sizes are described by using the term "k-factor"

NFSA


157

SPRINKLER LEGEND AND CUT SHEETS

160

161

CEILING CONSTRUCTION: NFPA 13

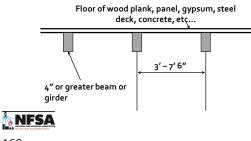
NFSA

162

HOW DOES CEILING CONSTRUCTION MATTER TO FIRE SPRINKLER INSTALLATION?

Review Section 3.3.43.1 and A.3.3... - obstructed construction

Review Section 3.3.43.2 and A.3.3- unobstructed construction


NFSA

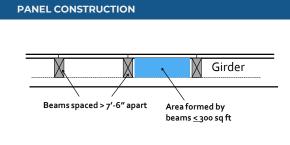
163

OBSTRUCTED CONSTRUCTION Official NFPA Definition • Panel construction and other construction where beams, trusses, or other members impede heat flow or water distribution in a manner that materially affects the ability of sprinklers to control or suppress a fire. (3.7.1) NFSA definition • Any construction that does not meet the definition of unobstructed construction • NFSA

168

BEAM AND GIRDER CONSTRUCTION

169


170

COMPOSITE WOOD JOIST CONSTRUCTION

171

NFSA

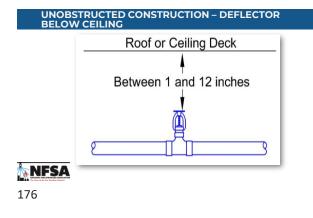
172

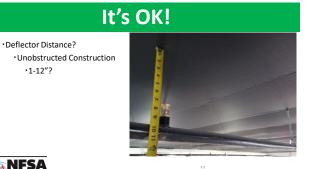
WOOD JOIST CONSTRUCTION

173

NFSA

174


DEFLECTOR BELOW CEILING


•Each sprinkler will have specific rules on how far the sprinkler may be down from the ceiling.

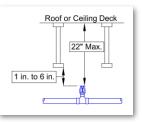
175

NFSA

177

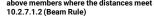
UH OH!

•Deflector Distance? ·Unobstructed Construction ·1-12"?



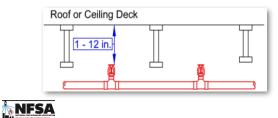
178

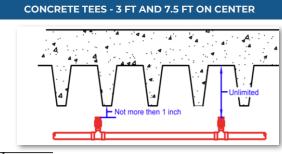
DEFLECTOR DISTANCES BELOW CEILINGS


Obstructed Construction •1-6 inches below structural members •Not more than 22 inches below ceiling

179

EXCEPTION TO OBSTRUCTED CONSTRUCTION Roof or Ceiling Deck Use "Beam Rule" to make sure spray 22" Max. clears structural members Sprinklers are allowed to be installed with deflectors at or above members where the distances meet Section 10.2.7.1.2 (Beam Rule)





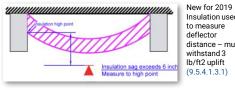
EXCEPTION TO OBSTRUCTED CONSTRUCTION RULE

•Sprinklers can be installed in each bay of obstructed construction with deflectors 1-12 inches below the ceiling

182

DISTANCE BELOW SPECIAL CEILINGS

Corrugated metal roof decks up to 3 inches measured from the bottom of deck. Deeper decks measure from the top of deck.


S 3 in. Measure to bottom S 3 in. Measure to top

NFSA

183

DISTANCE BELOW SPECIAL CEILINGS

Measure to attached insulation. If insulation sags measure to mid point. If it sags more than 6 inches measure to high point of the insulation.

Insulation used distance - must

NFSA

184

STANDARD SPRAY SPRINKLERS DEFLECTOR POSITION

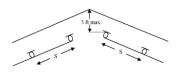
Deflectors are required to be installed parallel to ceilings, roofs and incline of stairs

185

STANDARD SPRAY SPRINKLERS DEFLECTOR POSITION

•Where sprinklers are installed at the peak of a pitched roof, the deflectors shall be horizontal

•Sprinklers under pitched roofs with slopes less than 2 in 12 are permitted to be installed with their deflectors horizontal



186

STANDARD SPRAY SPRINKLERS UNDER PITCHED SURFACES

•The sprinkler closest to the peak must be within 3 ft vertically of the peak

187

CEILING CONSTRUCTION = AREA PER SPRINKLER AND SPACING

Review Table 10.2.4.2.1(a)

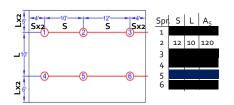
188

DETERMINATION OF "AREA OF COVERAGE"

Based upon the "S x L rule"

AS = S x L

AS = Area of Coverage


S = Distance along branch line or twice distance to wall.

L = Distance between branch line or twice distance to wall.

190

DETERMINE AREA OF COVERAGE FOR EACH SPRINKLER

NFSA

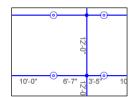
191

RESIDENTIAL SPRINKLERS AREA OF COVERAGE

 For residential sprinklers...
 Victaulic V2742, 4.9 K-Factor Concealed Pendent Sprinkler For Ceiling types refer to NFPA 13, 13R or 13D 2013 Edition

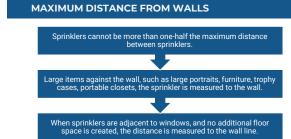
Do not use SxL

•	Coverage criteria will be
	covered in the
	listing/manufacturer's
	data sheet


Max. Coverage Area ^(s)	Ra	ry Temp ting F/68°C	R	liate Temp iting F/79°C	D
Ft. x Ft. m x m	Flow ^(L) GPM L/min	Pressure ^{®)} PSI bar	Flow ⁶³⁾ GPM L/min	Pressure ⁽¹⁾ PSI bar	
12 X 12 3.7 X 3.7	13 49.2	7.0 0.48	N/A	N/A	
14 X 14 4.3 X 4.3	13 49.2	7.0 0.48	N/A	N/A	
16 X 16 4.9 X 4.9	13 49.2	7.0 0.48	N/A	N/A	
18 X 18 5.5 X 5.5	17 64.3	12 0.83	N/A	N/A	
20 X 20 6.1 X 6.1	20 75.7	16.7 1.15	N/A	N/A	

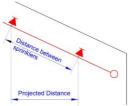
193

DISTANCE OF SPRINKLERS


 SS U/P light hazard: 	15 feet
 SS U/P ordinary hazard: 	15 feet
 SS U/P extra hazard: 	12 feet

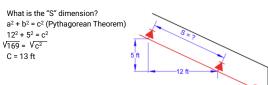
•SS Sidewall light hazard: 14 feet •SS Sidewall ordinary hazard: 10 feet

194



195

UNDER PITCHED SURFACES


 Distances between sprinklers are measured along the slope
 For determining the amount of water necessary to meet the density/area requirements (hydraulic calculations), the projected area on the floor shall be used.

196

UNDER PITCHED SURFACES

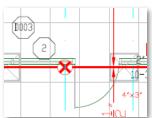
NFSA

197

MAXIMUM DISTANCES FROM WALLS FOR STANDARD SPRAY SPRINKLERS

·½ of the allowable distance between sprinklers
 ·Small room rule exception (will be covered later in the class)
 ·Measured perpendicular to the wall

What is the Maximum Distance from the Wall for Ordinary Hazard?


7 ½ ft (half of maximum allowable distance - 15 ft)

198

MINIMUM DISTANCE FROM WALL

•The distance of sprinklers to walls shall not be less than 4 inches, unless specifically listed to be closer than 4 inches.

199

200

201

MODULE 7 – OVERVIEW & INSTALLATION REQUIREMENTS OF SPRINKLERS

Fire Sprinkler System Plan Review

Г

202

CHECKLIST

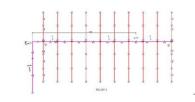
This modules covers several steps in the following checklists:

- Positioning checklist
- Design review checklist

				Ni74 201	26 2	MEPA 12 2519		
Decab	mand nWrea curves			11.2.1 Pg 11.3	1333	183311 Pg 19331	z	
Dealer	where Several C	Sarbbel: 202	10/06 13					
20	I NEW ST	ttandatt Uprefit/ Pendett	Sdeval	Extended Upright/ Pendett	Coverage Sidewall	Noder-bal	CM5A	Chat
		A	0	C	0	6	1	G
501	Area of coverage	103.4	20.3,3	1133		131.61	18.2.5	14.2.8
502	Distance of spenders	20.3.5.1	18.841	11.2.8.1	11.84.1	111.7.1	18281	54,2 %
508	Maximum dotance from wells	30.2.5.2	15.84.2	11.2.5.2	11.342	121.7.2	18282	14.2.8.
504	Moinum dotance from wells	352.5.5	18.54.3	11.2.53	11.3.4.3	11.1.3	152.6.5	14.2.5
505	telow coding	30.2.8.1	15.5.5	11241	11.3.5.1	12.1.8	19171	14.2.35
506	Obstruction less than L8 inches	10.1.7.2	18.3.62	11.2.5.2	11.163	P121102 5023132	192.82	14.2.11
507	Obstruction greater than 18 inches	20.17.3	11363	11253	11.163	P121103 5121113	12233	1
508	Clearance to storage	10.3.8	1213	112.6	ii A7	-	18.2.9	14.3.1
509	Stylights	5.5.39	93.18	9,5,30	33.00	93.18	5.3.25	9.3.20

203

SPECIAL SITUATIONS & EXEMPTIONS

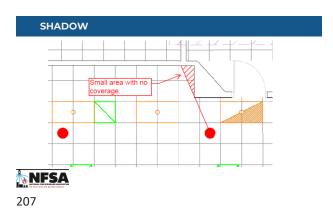


NFSA

204

MAXIMUM SYSTEM SIZE

•Need a separate system (control valve, drain, and alarm) when you exceed: •52,000 sq ft per floor for light and ordinary hazard systems •40,000 sq ft per floor for extra hazard and storage systems •Area of mezzanines does not count


•Section 9.1.1 has an extensive list of the basic rules of spacing,

location and position rules. •Throughout the building •Maximum protection area •Shadows are permitted •Sprinklers can be exempt •Deviations from rules •Break the rules •No sprinklers in furniture

·No sprinklers in equipment

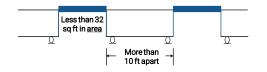
206

NFPA 13R & NFPA 13D SHADOWS

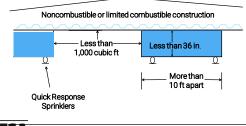
-A single sprinkler can have up to 15 sq. ft. of dry area. -Sprinklers are permitted to be omitted from corridors to 2' in depth and 9' in length (13R only)

208

MULTISTORY CONTROL VALVES


•Multistory buildings exceeding 2 stories shall be provided with a floor control valve, check valve, main drain valve, and flow switch for isolation, control, and annunciation of waterflow for each individual floor level

209


SKYLIGHTS

NFSA

210

CEILING POCKET

NFSA

211

BATHROOMS AND CLOSETS

- •NFPA 13 dwelling unit bathrooms in dwelling units 55 sf and under are exempt.
- IBC exempts bathrooms more than 55 sf from sprinkler protection for all Group R, provided walls and ceilings are noncombustible or limited combustible with a 15-minute thermal barrier

212

CONCEALED SPACES

Concealed spaces of exposed combustible construction shall be protected by sprinklers.

Except in concealed spaces where sprinklers are not required to be installed by 9.2.1 through 9.2.1.19 and 9.3.18.

213

CONCEALED SPACES

•No Formal Definition

However:
 Enclosed on All Sides
 Limited or No Access
 Not Intended for Occupancy
 Not Intended for Storage

•Where sprinklers are installed, use light hazard density.

214

UNSPRINKLERED CONCEALED SPACES

•Why are sprinklers permitted to be omitted from certain concealed spaces?

•Access •Fuel Load •Physically Impractical

215

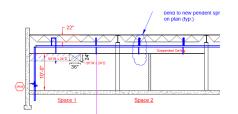
WHY ARE CONCEALED SPACES IMPORTANT?

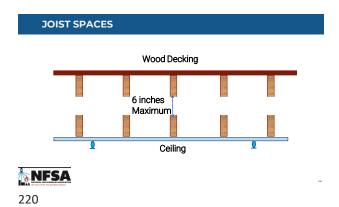
216

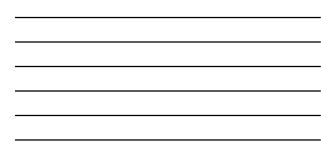
UNSPRINKLERED CONCEALED SPACES: MINIMAL COMBUSTIBLE LOADING

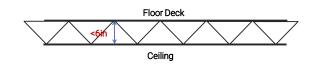
217

UNSPRINKLERED CONCEALED SPACES: SMALL OPENINGS

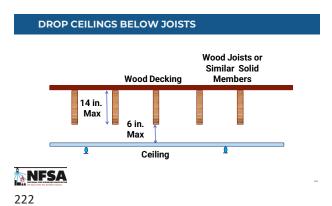

•The space shall be considered concealed space even with small openings such as those used as return air for a plenum.


218

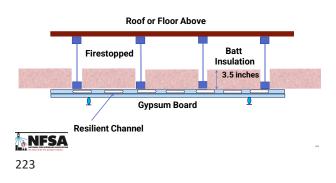

ARE SPRINKLERS REQUIRED ABOVE A SUSPENDED CEILING?

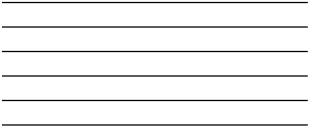

NFSA

219

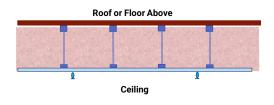


SMALL BAR JOISTS

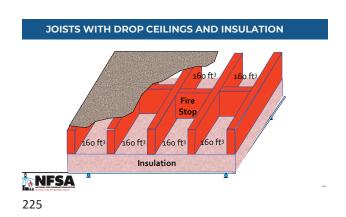



NFSA

221



I-JOISTS WITH CEILINGS



FILLED SPACES

224

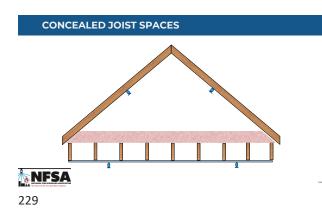
SMALL ROOMS

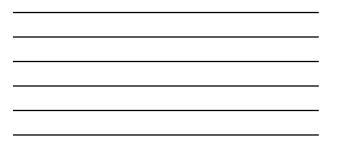
•Concealed spaces over isolated small rooms not exceeding 55 ft2 in area

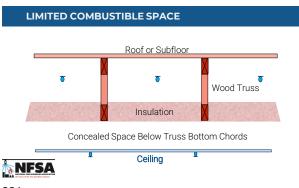
226

FIRE RETARDANT TREATED WOOD

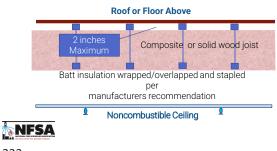
227


PAPER-FACED INSULATION


 Noncombustible concealed spaces having exposed combustible insulation where the heat content of the facing and substrate of the insulation material does not exceed 1000 Btu/ft2 shall not require sprinkler protection.



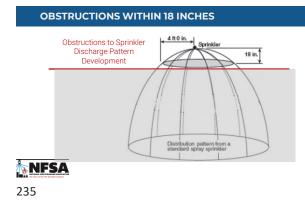
228

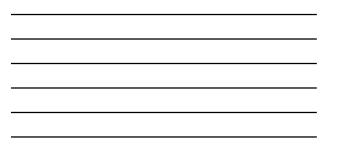


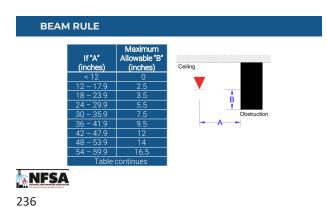
FILLED I JOIST WITH DROP CEILING

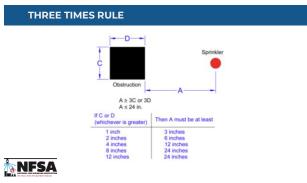
NFSA

233


ELEVATOR SHAFTS


•NFPA 13 has updated text for new elevator technology. •Elevator divisions usually overrule NFPA 13. •Sprinkler within two feet of bottom of shaft.





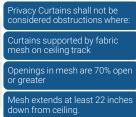
234

THE PARTITION RULE

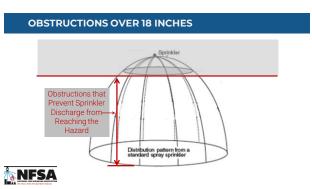
·2019 edition

•Light Hazard Only •Privacy curtains, room dividers, freestanding partitions

•2022 edition •Ordinary hazard occupancies added •See Section 10.2.7.3.2.3



243


THE PARTITION RULE

NFSA

244

246

OBSTRUCTIONS OVER 18 INCHES

NFSA

247

248

ENCLOSED STAIRWAYS

•Combustible •Top of stairway •Under each floor landing •Under lowest intermediate landing

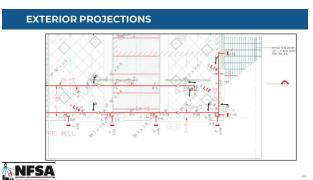
•Noncombustible •Top of stairway •Under lowest intermediate landing

249

400 CUBIC FT CLOSETS/COMPARTMENTS

Closets and compartments, including areas housing mechanical equipment 400 ft³ or less:

•A single sprinkler at the highest ceiling level is sufficient •Obstructions and minimum distance(s) to walls do not need to be considered.


250

EXTERIOR PROJECTIONS

NFSA

251

SOFFITS, EAVES, OVERHANGS

253

NFSA

254

SPACES UNDER GROUND FLOORS, EXTERIOR DOCKS, AND PLATFORMS

Spaces Under ground Floors, Exterior Docks, and Platforms
 The space is not accessible
 Protected against wind-borne debris accumulation
 No fuel-fired equipment
 Floor above is of tight construction
 No combustible/flammable liquids handled above

255

256

CLEARANCE TO STORAGE

Pendent and upright spray sprinklers clearance to storage is a minimum of 18 inches.

Storage on a shelf against a wall, the 18-inch minimum does not apply.

257

MODULE 7 ASSESSMENTS

258

MODULE 8 – SYSTEMS REVIEW – INSTALLATION REQUIREMENTS FOR PIPING & COMPONENTS

Fire Sprinkler System Plan Re

259

CHECKLIST

This modules covers several steps in the following checklists:

· Systems review checklist

Design review checklist

		NFPA 13	MEPA 2	2	
		2016	254.9		
Water demand		11231.1	12.3.3.1		
Decuty/Vrep	1041	Pg11.3.5.1.1	Pg 1933	3.1	
Weber supply	Syttems Review Cheskills	6			
Sprinklers				N/PA L2	AUX II
Could respon				2018	2015
Sleped catter	421 141101			611	7.1.1
Dry pipe and	412 Disc and Mile	<i></i>		15.14	23.74
with temper		et connection laise Map III		0.05 0.04	
land of main	454	installation		81732	16.12.2
Source dealers	425	100		8172.3	10.12.5
Opening peo		Amergements		81774	16125
Special designs	457 Salars attach	ments		683-685	16111-1611.9
invice club	405	Waterflow dorms		817.1	16.11.2
Canopes	429	Gauge connection		8.17.3	16.13
- Cartopen	430 Hangers			8.5	17.1
	431	Trapent		9.1.1.7	17.0
Recidential s	4.12	Rodi		\$3.2	12.2.1
Denve pri		fatesm)crosts(pteal)	(boosd)	31.5-5	17.2.2-4
Water certail	415	warger spacing		\$22,938	17.4.2, 17.8.8
Comb. conce	425	Unsupported lengths		22.5.4	17.4.3.4
Adjacent Palari	435	Unsupported anyoser len	gTu	\$3.3.5	17.6.25
Hope streams	427	Server brong		9.8	38.1
Pipe schedule d	418	Rectile salplings Separation assembly		5.1.2	382
Water Supple		Separation assembly (Searchore initiatio		533	10.3
_ size of rises	421	Constance crosena		3.5.5	16.5
Cafe heard	432	own owned	mittaine	8355	1855
Odayha	425		g.bookg	5350	18.5.0
Special structure	414	10	r broom	1354	145.6
	425		Conset 1	8.85.17	19.5.12
Unprinklen	420		disability (23.6	38.6
- Jupreases	437 Wet pipe and	10.04		7.4	8.1
	425	Pressonantes		731	81.1
	429	Solief values		7.1.2	8.1.2
	430	Cramage		8.10.2.2	16.13.2

260

AIR VENTS (NEW SINCE NFPA 13 - 2016 EDITION)

261

RELIEF VALVES (8.1.2)

Setting: operate at 175 psi (12 bar) or 10 psi (0.7 bar) in excess of the maximum system pressure, whichever is greater. Location:

·Downstream of check valves

Size:

·½ inch min.

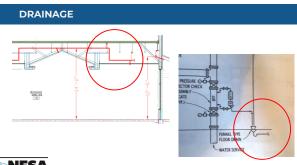
262

DRAINAGE - MAIN DRAIN CONNECTION

·Required on all systems ·Primary drain located on the system riser

•All piping arranged where practicable to drain to the main drain valve. ·Used as a flow test connection

263


DRAINAGE

Wet and preaction systems not subject to freezing: •50 gals. and over, pipe to accessible location 1 inch valve •5 to 50 gals: 3/4-inch valve with cap or plug •Less than 5 gals: ·1/2-inch cap or plug ·Removal of a pendent sprinkler ·Flexible couplings

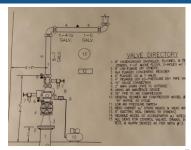
NFSA

264

TRAPPED PIPING

Auxiliary drains shall be provided where a change in piping direction prevents drainage of system piping through the main drain valve.

Trapped piping that will be covered should be piped and ready at rough inspection.



266

DRY AND PREACTION SYSTEMS

•Only use dry-pipe systems where wet systems cannot be used (Less than 40° F) •More costly to maintain •More costly to install and operate

·Located in freezers, canopies, etc.

267

PITCH OF PIPING

Helps water to drain out of dry & preaction pipe systems after use

Pitched back toward the riser Branch lines: 1/2 inch per 10 ft

System mains: ¼ inch per 10 ft

Refrigerated mains: 1/2 inch per 10 ft

Affects distance of sprinklers from ceiling

Affects hanger length

268

SPRINKLERS

Upright sprinklers Listed dry-pendent sprinklers

Pendent sprinklers on return bends with both located in heated areas

Sidewall sprinklers – pitched to drain

Dry pendent image courtesy of Viking

269

VOLUME OF SYSTEM

•Shop drawings shall indicate the size of the dry pipe or preaction system.

•Deliver water to test connection within 60 seconds. •Except: less than 500 gallons and over 500 to 750 gallons with a QOD.

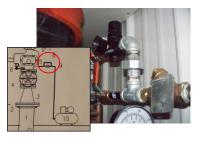
OPEN PARKING LEVEL DRY SYSTEM CAPACITY - 371 GALLONS

270

QUICK OPENING DEVICES

Installed to meet discharge times.
 Listed
 Accelerators
 Electric
 Mechanical
 Exhausters

271


AIR PRESSURE AND SUPPLY

NFSA

272

AIR PRESSURE (AIR MAINTENANCE DEVICE)

NFSA

273

WATERFLOW ALARMS

•Exterior alarm per Step 827 (IBC)

IBC requires audible device on exterior of building. (903.4.2)
Approved identification signs, should be provided for outside alarm

devices.

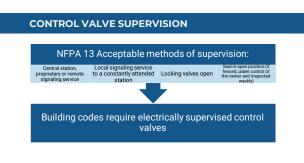
NFSA

274

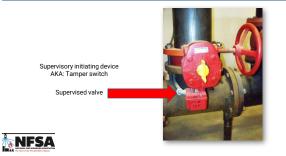
WATERFLOW ALARMS

-IBC requires control valves for sprinkler systems to be supervised by a listed fire alarm control unit

•Waterflow must activate within 100 seconds


•90 seconds for water flow alarm to activate +

 10 seconds to activate occupant notification (if provided)


275

276

277

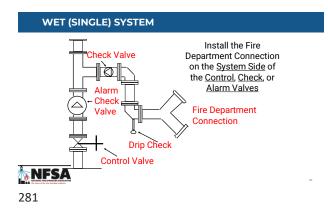
SUPERVISORY SWITCH CLOSE-UP

278

LOCKED OPEN OS & Y

279

FDC - INSTALLATION


•Fire department connections are required on all NFPA 13 installations, except:

- •The building is remote from FD access.
- •The building is 2,000 sq.ft. or less.
- •The building has a deluge sprinkler system that exceeds the capacity of the fire department.

280

UH OH!

- •What's wrong?
 - FDC to be located between system control valve and dry-pipe valve on single dry system – NFPA 13 8.17.2.4.2. Here there is a shut-off valve above the FDC

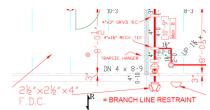
282

FDC - SIZE

•4 inches for engine connections•6 inches for boat connections

•Hydraulically calculated systems: •Can be less than 4 inches

•Can be less than 4 inches •No less than riser size


•For a single system riser.

283

FDC - ARRANGEMENT

284

LOCKING CAPS

•The fire code official may require locking caps on fire department connections

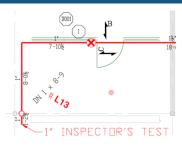
Responding fire department must have the appropriate key readily available

285

INSPECTOR'S TEST CONNECTIONS (16.14.1)

Purpose:
 Alarm test connection

·Location:


•Anywhere - Downstream of flow alarm •Termination Point:

·Outside or to a drain sized to accept full flow under system pressure

286

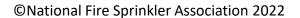
INSPECTOR'S TEST CONNECTION

INSPECTORS TEST

287

COMPRESSOR AND DRY SYSTEMS

·Air compressors for dry sprinkler systems are not required to be listed


·Compressors are not permitted to be wired to a light switch or use a plug into a wall outlet (hard-wired) ·Air maintenance device is required, unless the dry system has a capacity less than 5.5 ft³ at 10 psi

Air maintenance device (when required) must be listed ·An air maintenance device is required for each dry

system

288

NITROGEN AND DRY SYSTEMS

Nitrogen

Nitrogen
 Supply must be reliable
 When nitrogen is used for increased C factor, a listed nitrogen generator must be used.
 ITM per NFPA 25
 Monthly inspection
 Annual testing
 Maintened per manufacturer's

•Maintained per manufacturer's instructions

289

NFSA

290

MODULE 9 – DESIGN APPROACHES

Fire Sprinkler System Plan Review

292

CHECKLIST

This modules covers several steps in the following checklists:

Systems review checklist

Hydraulic review checklist

			NPRA 13	NPPA 1		
			2005	2005	- 1	
801	working plans		24.1	10.5		
	Summary sheet	lighters keiven Checklist				
300	General Informs				NERA LA	All ALL
304					2014	2015
305		dil lating			6.5.1	711
306		ALL LANGE			65.64	23.74
307			connection Jaks M		0.5,0.4	.03(08)
306			connection passe to	eb-accd	81732	16.12.2
309			27		8173.3	10.12.5
310			Citemagements		81774	16125
211		AU7 Galan study	and a second		683.685	16111-16161
312			Atorhow during		817.1	16.11.2
213	Area per sprinio		aute contection		8.17.3	16.13
314		430 Hangers			8.5	17.1
215	Graph sheet any	411 T	-		9117	17.0
316	Surply analysis		odit		\$3.2	12.2.5
217		413	et even interest el tr	tootheat	31.5.5	17.2.2-4
218			anger spacing		\$22,938	17.4.2, 17.8.8
219			invacion field lengths		22.5.4	17.4.3.4
220		435	evores beforgates	r kingths	\$3.25	17,6.25
320			press brand		9.3	58.1
222			lexitle miplings		8.8.2	18.2
		429 5	epanetron assembly		333	18.8
829			learance otherta		224	28.6
224			way braining		2.3.5	18.7
125		432		Lateral bracing	8.2.5.5	34.5.5
		425		sing books	5350	38.5.6
325		434		Alter bracing	13.5.0	18.5.8
327		435		Ratteners	8.85.17	18.5.32
328		425		Retrainty	9.3.6	28.0
329		437 Wet pipe system			7.1	81
			rectors propo-		711	811
			oliof salues Formate		816.5.2	8.1.2
			a per lago		81743	10.15.2
		452 (Dydemation			0.11.4.4	20.14.5

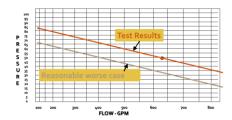
293

AUTOMATIC WATER SUPPLIES

•Municipal or Private water supply •Water storage reservoir and fire pump •Pressure tank •Gravity tank

294

NFPA 13 (2019) - 5.2.2.2


Requirement: The volume and pressure of a public water supply shall be determined from waterflow test data or other approved method.

Annex: An adjustment to the waterflow test data to account for daily and seasonal fluctuations, possible interruption by flood or ice conditions, large simultaneous industrial use, future demand on the water supply system, or any other condition that could affect the water supply should be made as appropriate.

299

FLOW TEST SUMMARY SHEET

300

WATER DEMAND

•The water supply for sprinklers shall be determined only from one of the following methods:

•Density/area curves •The room design method

Special design areas

·What method is used? Follow the checklist accordingly.

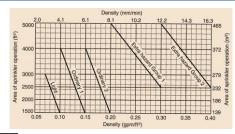
302

Area/Density

Single point (new)

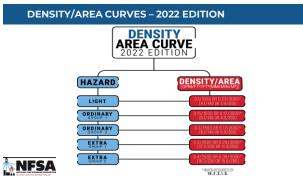
• Curves (existing)

Room design method

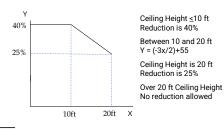

Special design approaches

- Residential
- Corridors

303

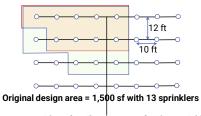


DENSITY/AREA CURVES



304

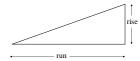
305


QUICK RESPONSE DECREASE

NFSA

306

QUICK RESPONSE DESIGN AREA EXAMPLE


QR, wet, with 15 ft ceiling = 1,035 sf with 9 sprinklers

NFSA

309

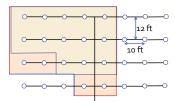
SLOPED CEILING INCREASE

•Sloped Ceilings •Area of operation is increased by 30% if pitch exceeds 2 in 12 (rise in run). •This is an angle of 9.46°

NFSA

310

DRY PIPE AND DOUBLE INTERLOCK PREACTION SYSTEM INCREASE



For dry pipe and double interlock preaction sprinkler systems, increase by 30%.

The adjustment to the design area is made without changing the density.

311

DRY PIPE INCREASE EXAMPLE

Original design area = 1,500 sf with 13 sprinklers Dry system = 1,950 sf with 17 sprinklers

312

DENSITY/AREA SPRINKLERS

 Increases = more sprinklers in design area
 Decreases = fewer sprinklers in design

area

Minimum five (5) sprinklers in design area.
 Area 1 DETERMED USNG
 AFEA 1 OCTEMMED USNG
 AFEA 1 OCTEMPED US

313

©National Fire Sprinkler Association 2022

Y= 31% 1500x.31 =465 1500- 465 =1035 SQ FT

B

HIGH TEMPERATURE DECREASE

The density/area curves for extra hazard are based on the use of ordinary temperature sprinklers.

When high temperature sprinklers are used, the design area is decreased by 25%, but never below the minimum threshold of 2,000 square feet.

314

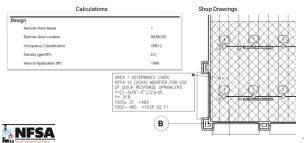
SUM OF MULTIPLE INCREASES AND DECREASES

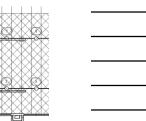
Compound adjustments based on original area of operation selected from density/area figure.

•Example 1: Dry-pipe system with ceiling slope of 4 in 12 •30% increase for dry system •30% increase for slope •1,500 sf x 1.3 x 1.3 = 2,535 sf design area

315

MULTIPLE ADJUSTMENTS EXAMPLE


Example 2: QR sprinklers with wet pipe system and ceiling slope of 3 in 12, maximum ceiling height of 20 ft. -25% decrease for QR sprinklers -30% increase for slope -1,500 sf x 0.75 x 1.3 = 1,463 sf



NFSA

316

DESIGN AREA

317

DESIGN AREA EXAMPLE

A building with a 15 ft ceiling

Wet pipe sprinkler system

Standard response sprinklers

120 sq ft spacing (12 ft between branch lines and 10 ft between sprinklers along the branch line)

Ordinary hazard group 2

0.2 gpm per sq ft over 1500 sq ft (No adjustments apply)

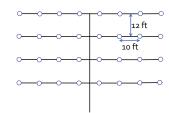
318

HOW MUCH WATER WILL FLOW?

319

HOW MANY SPRINKLERS?

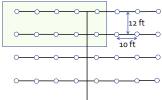
How many sprinklers are supposed to be in the design area? Area of Operation/Protection Area = # Sprinklers


NFSA

ALWAYS ROUND UP TO NEXT WHOLE SPRINKLER

320

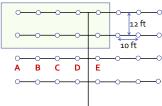
How many sprinklers will be on a branch line?	27.2.4.2.1
$\frac{1.2\sqrt{1500}}{4.6} = 4.6$	ion
•4 sprinklers per branch line 10 "S" Dimension •5 sprinklers per branch line	
ALWAYS ROUND UP TO NEKT WHOLE	53
21	


DESIGN AREA EXAMPLE

NFSA

322

DESIGN AREA EXAMPLE

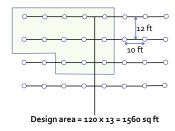


5 sprinklers per branch line over 2 branch lines gives you 10 sprinklers. Need 3 more!

NFSA

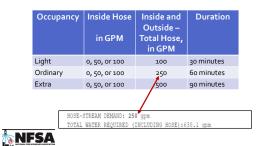
323

DESIGN AREA EXAMPLE



Which 3 sprinklers do you pick from the next branch line: ABC or CDE?

324


DESIGN AREA EXAMPLE

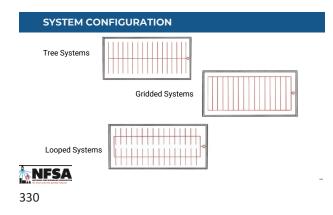
325

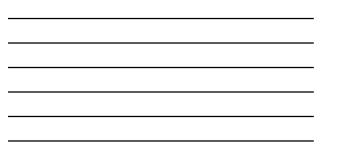
HOSE STREAM ALLOWANCE

326

MODULE 10 - HYDRAULIC CALCULATION REVIEW

Fire Sprinkler System Plan Review


327


HYDRAULIC REVIEW CHECKLIST

		MPA 13 2014	NIPA 13
201	Working plans	25.1	27.1
902	Summary sheet analysis	23.3.5.2	27.4.5.2
808	General Information	23352	27.4.5.2
304	Contractor, technician, name	23352	27.4.5.2
305	Type, use, hazard, commodity	23.3.5.2	27,4.5.2
305	System configuration		
207	Remote design area(s)	23.4.4.7	27.2.A.7
305	System design		
300	Type: wet, dry, single, dbl, preaction, deluge		
810	Dry/preaction system volume	A.7.2.3	A82.3
211	Design area (square feet)		
812	Density		Fig 19.3.3.1
212	Area per sprinkler		
814	Total water		
315	Graph sheet analysis	23.3.5.3	274.53
316	Supply analysis	22.2.5.4	27.4.5.4
317	Node analysis	23355	27455
818	Worksheet analysis	21.1.5.6	27.A.5.6
519	Node tags	223.5.6	27.4.5.6
320	Pressure	2142.1.1	27.2.2.1
821	x factor	T6231	T7.2.2.3
222	Flow		
323	Pipe diameters .	TA632	TA1633
224	Pipe lengths	25.4.3	27.2.5
	Equivalent pipe longth for	23.4.3	27.2.8
325	(mags		
326	Sprig and drop lengths	23.4.3	27.2.3
327	Cfactor	T224481	T 27.2.4.8
325	Equipment friction losses	23.4.4.5	27.2.A.8
829	Hose stream and Duration	T11.2.3.1.2	19.3.3.1.2
330	Calculation path	23.4.1.6	27.2.1.6
331	Graph sheet		27.4.5.3

328

SUMMARY SHEET

An Education Physic Univ. 2017-021 (Instants) Physic Univ. 2017-021 (Instants) Physic Univ. 2017 Physics Phy	09; 104:15100 105:1400040.00200 5040 1 10001 12 200
(metro i) maps Later and Tetrothy (p) Camput the Metro and Tetrothy (p) Metro of Selection and Applied (p) Metro of Selec	096 333000 09 147403440945, 90.2000 0 440 1 400 1 400 1 42
mage courses whiteyes con- senses of Marina Maria may of Constants WA. Andres 51 William Sciences Sciences Andres transmission Andres transmission Andre transmission Andre transmission Andre transmission Andres transmission Andre transmission An	096 333000 09 147403440945, 90.2000 0 440 1 400 1 400 1 42
Company to Advancedant yeary of contension VIA NA Adamase 11 Homosettas (IIIA, SUPER, A Homose Surgers) Market Surgers Analysis on process Analysis on process Analysis on process Analysis on process Analysis on process Analysis on process Company (Contension) Company (Contension) Company Company (Contension) Company	03 (APHORMOUTE, NO2000 5-mit 1 Novers 089 2 12
New y Granter VFA Annes E 19 MILLER Hannes E 19 MILLER Hannes Karley Karley Sanger Andrey New Janden Karley Annes United Karley Annes United Gaugerto Gaugerto Lawa y Appalant 20	5 met 1 1 1 1 1 1 1 1 2
Added Eximition 2000 (R. 2000 A Prove Amate: Anony Steapy: Anony Young antidate: Property Amate Amatemia Property Amatemia Amatem	5 met 1 1 1 1 1 1 1 1 2
Prove Answer Seene at Despite: Answin Yonng Landeller Answin Answer Answin Answer Answin Answer Ungengeng Seentham Carelog geom? Answin Angerhamster (*)	5 met 1 1 1 1 1 1 1 1 2
Andre 25 Junger: Andrei Yange andreiten Neter Receb konsteren Andrei Konsteren Omgeng Gaarbiten Cangeng Gaarbiten Cangeng Gaarbiten Cangeng Gaarbiten (*)	1 NBMOTE 049.2 12
Adron's Young Landolfon Design Partick Asis Yana Partick Asis Landon Oring and Landolfon Oring and Landolfon David geolfon Landolfon	NEWOTE 0802 82
Nextger Permite Anas Inana Permite Anas Juardin Orospeng DasaRhation Canada gagnath Anas of Application (P)	NEWOTE 0802 82
Ranola Anar Name Ranola Anar Junitan Umganog Dawithatan Caraly gawithy Ana of Application (P)	NEWOTE 0802 82
Partole Anno Loudion Oraquero; Osselhation Density (gentP) Anno of Application (P)	NEWOTE 0802 82
Orogency Development Development Ana of Application (P)	040.2
Canady (gendly) Area of Application (#1)	12
Area of Application (#1)	
Coverage per lighteen (P)	
Number of Existing Sprinklers	
In-fack benant (gam)	
Special Health	
Hose Shearne (gam)	28
Tota Mater Report (inc. New Dearro; (grr)	473.8
Party and Pressure of Statute (SK)	88.1
Type of System	Trans.
Yours-Drifts (Jean gal)	477.5 (6
Natur Supply Information	
Cale	0104001
Laufer	10422 & H0421
Tauta .	DAC .

NFSA

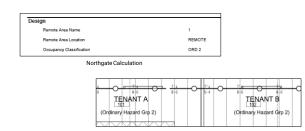
331

GENERAL INFORMATION

Project Name : NORTHGATE LOT		
Contract No. :	City:	
Project Location: ANYTOWN, USA	Date: 2/23/2023	
Northg	te Calculation	
	Contractor Information Name of Computer, John Swanson Address: 514 PROGRESS DR, SUITE A Phone Number: Name of Designer: Its John Agan	City: LINTHICUM HEIGHTS, MD 21080 E-mail:
	Authority Having Jurisdiction: Jeff Hugo	
	Northgate Calc	ulation

332

GENERAL INFORMATION

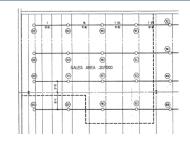

NFORMATION
SISANLEY DRAFE
(TENWITS A & C) (TENWIT R)
SEPARATED OCCUPANCES PER 568.1. WOST RESTRICTIVE PRACY APPLIES IN 2
92
SALTY CODE (059C) 6 (MEC) ALTY CODE (XEISC) 27 SPECIALTY CODE (DEESC)
ALTY CODE (OHSC) TY CODE (OHSC) (SAVETY CODE
LTY CODE (STATE ENFORCED)
W CONSTRUCTION TYPE:
2005 42.10.000 5.F. 10.000 5.F.
NAME AND ADDRESS OF ADDRE

Northgate Shop Drawing

333

NFSA

TYPE OF CONSTRUCTION, USE, HAZARD, COMMODITY



Northgate Shop Drawing

NFSA

334

REMOTE DESIGN AREAS

NFSA

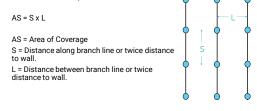
Image: State Stat

336

DESIGN AREA

 \sim

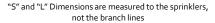
5

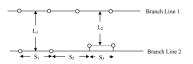

338

DENSITY Design Remote Area Name Remote Area Location REMOTE Occupancy Classification ORD 2 0.2 Density (gpm/tt²) Area of Application (ft²) 1080 Northgate Calculation (Ordinary Hazard Grp 2) -74 H Northgate Shop Drawing **NFSA** 129

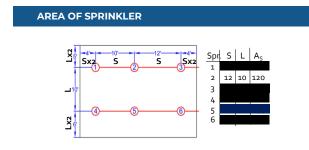
339

AREA OF SPRINKLER

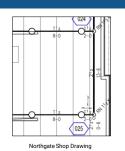

Based upon the "S x L rule"



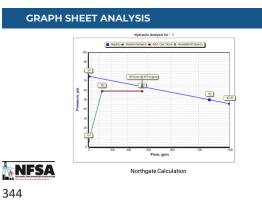
340


S X L RULE

341



342


AREA OF SPRINKLER

343

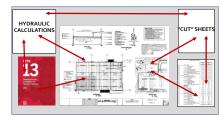
SUPPLY ANALYSIS

Supply Analys	is					
Node at Source	Static Pressure (psi)	Residual Pressure (psi)	Flow (gpm)	Available Pressure (psi)	Total Demand (gpm)	Required Pressure (psi)
SRC	75	50	736	72.2	473.8	59.1

Northgate Calculation

345

NODE ANALYSIS


	Node Data							
Node#	Type	K-Fact.	Icsed Overdischarge		Tot. Pres.	Req. Pres.		
Elev	Hgroup	Open/Closed			Elev. Pres.	Req. Discharg		
ft		gpm/psi%	gpm gpm	ft* gpm/ft*	psi psi	psi gpm		
1	Overhead Sprinkler	5.6	21.6	108	14.9	14.9		
13.67	HEAD	Open	0	0.2	-5.9	21.6		
6	Overhead Sprinkler	5.6	21.7	108	15	14.9		
13.92	HEAD	Open	0.1	0.201	-6	21.6		
2	Overhead Sprinkler	5.6	21.7	108	15	14.9		
13.67	HEAD	Open	0.1	0.201	-5.9	21.6		
7	Overhead Sprinkler	5.6	21.8	108	15.1	14.9		
13.92	HEAD	Open	0.2	0.202	-6	21.6		
3	Overhead Sprinkler	5.6	22	108	15.4	14.9		
13.67	HEAD	Open	0.4	0.204		21.6		
8	Overhead Sprinkler	5.6	22.1	108	15.6	14.9		
13.92	HEAD	Open	0.5	0.204	-6	21.6		
4	Overhead Sprinkler	5.6	22.7	108	16.4	14.9		
13.67	HEAD	Open	1.1	0.21	-5.9	21.6		
9	Overhead Sprinkler	5.6	22.7	108	16.5	14.9		
13.92	HEAD	Open	1.1	0.211	-6	21.6		
5	Overhead Sprinkler	5.6	23.8	108	18	14.9		
13.67	HEAD	Open	2.2	0.22	-5.9	21.6		
10	Overhead Sprinkler	5.6	23.8	108	18.1	14.9		
13.92	HEAD	Open	2.2	0.221	-6	21.6		
025	Node				40.8			

NFSA

Northgate Calculation

346

WORKSHEET REVIEW

Verify calcs to shop drawings to cut sheets to standard to checklist

347

CALCULATION PATH

·From most remote sprinkler to the water source.

318	Worksheet analysis
319	Node tags
320	Pressure
321	K-factor
322	Flow
323	Pipe diameters
324	Pipe lengths
	Equivalent pipe length for
325	fittings
326	Sprig and drop lengths
327	C-factor
328	Equipment friction losses
329	Hose stream and Duration
330	Calculation path

NFSA hydraulic review checklist

349

WORKSHEET REVIEW

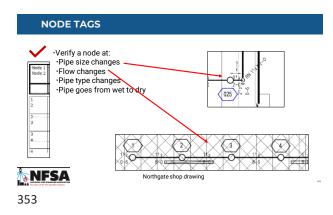
	Node 1 Node 2	Elev 1 Elev 2	K-Factor 1 K-Factor 2	Flow added (q) Total flow (Q)		Fittings quantity × (name) = length	F T	Pf per ft	total (Pt) elev (Pe) frict (Pf)	NOTES
		(ft)	(gpm/psil/s)	(gpm)	(in)	(ft)	(ft)	(psi)	(psi)	
	Path No	c 1								
1	1 2	13.67 13.67		21.6 21.6			8 0 8	0.0151		
2	2 3	13.67 13.67		21.7 43.3			8 0 8	0.0547	15 0 0,4	
3	3 4	13.67 13.67					8 0 8	120 0.117		
	4	13.67	5.6	22.7	1.5		8	120	16.4	

Northgate Calculation

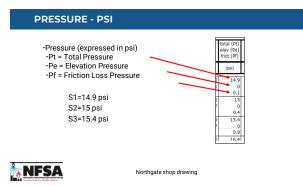
350

WORKSHEET REVIEW

Node 1 Node 2			Flow added (q) Total flow (Q)		Fittings quantity × (name) = length	H H L		total (Pt) elev (Pe) frict (Pf)	NOTES
	(ft)	(gpm/psil/s)	(gpm)	(in)	(ft)	(ft)	(psi)	(psi)	
Path No	1								
2	13.67 13.67			1.5 1.68		S 0 8	120 0.0151	14.9 0 0.1	
2 3	13.67 13.67	5.6	43.3			8 0 8	120 0.0547	15 0 0.4	
3 4	13.67 13.67	5.6 5.6				8 0 8	120 0.117	15.4 0 0.9	
4	13.67	5.6	22.7	1.5		8	120	16.4	


NFSA


351

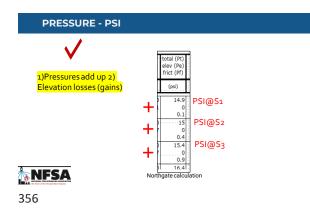

Node 1 Node 2	Elev 1 Elev 2	K-Factor 1 K-Factor 2	Flow added (q) Total flow (Q)	Nominal ID Actual ID	Fittings quantity × (name) = length	LFT	Pf per ft	total (Pt) elev (Pe) frict (Pf)	NOTES
	(ft)	(gpm/psi½)	(gpm)	(in)	(ft)	(ft)	(psi)	(psi)	
1	13.67	5.6	21.6	1.5		8	120	14.9	
2	13.67	5.6	21.6	1.68		0	0.0151	0	
						8		0.1	
2	13.67	5.6	21.7	1.5		8	120	15	
3	13.67	5.6	43.3	1.68		0	0.0547		
						8		0.4	
3	13.67	5.6		1.5		8	120	15.4	
4	13.67	5.6	65.3	1.68		0	0.117	0	
						8		0.9	
4	13.67	5.6	22.7	1.5		8	120	16.4	

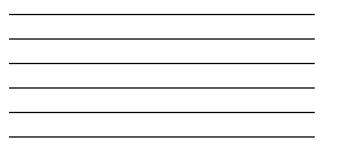
352

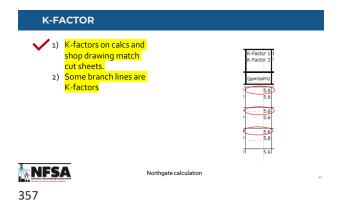
354

FINDING PRESSURE OR "P"

Why 14.9 psi?


 $\mathbf{P} = \begin{pmatrix} Q \\ K \end{pmatrix}^2$


Q = Flow = 21.6 gpm K = K-factor = 5.6


What would be the P if a K-8.0 is used?

355

FINDING K-FACTOR OR "K"

Why K-5.6?

 $\mathsf{K} = \sqrt[q]{p}$

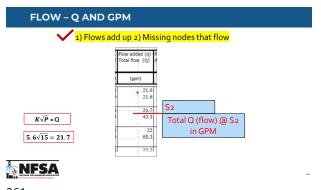
Q = Flow = 21.6 gpm P = Pressure = 14.9 psi

358

359

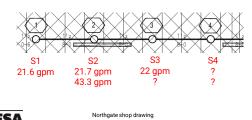
FINDING FLOW OR "Q"

Why 21.6 gpm?

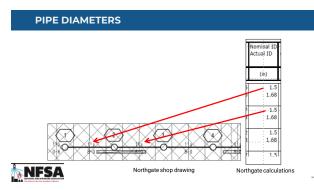

 $Q = K\sqrt{P}$

K = K-factor = 5.6 P = Pressure = 14.9 psi

What is the flow using a K-8.0 sprinkler?

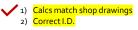


360

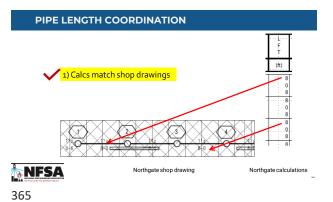

361

FLOW - Q AND GPM

NFSA

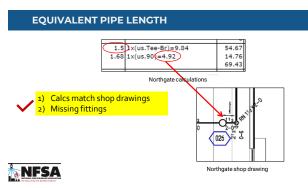

362

363


TABLE A.16.3.2

					Schede	ule 5			Schedu	le 10*			Schedul	e 30			Schedu	de 40	
	eninal re Size	Outside	Diameter	Inside I	Diameter		iall kocss	Inside D	Hameser		all knew	Inside E	Kameter		all kocss	Inside D	iameter	Wall Th	ticknes
ka.	mm	in.	mm	ia.	mm	ia.	mm	ia.	10103	ia.	(1111)	ia.	1000	ia.	1000	ia,	mm	in.	mm
500	15	0.840	21.5	_	_	_	_	0.674	17.1	0.083	2.1	_	_	_	_	0.622	15.8	0.109	2.77
3/2	20	1.050	26.7	-	-	-	_	0.884	22.4	0.683	2.1	-	_	_	_	0.824	21.0	0.115	2.87
1	25	1.315	53.4	1.185	30.1	0.065	1.7	1.097	27.9	0.109	2.8			_	_	1.049	26.6	0.153	3.87
1%	32	1.660	42.2	1.530	38.9	0.065	1.7	1.442	36.6	0.100	2.8			_		1.380	35.1	0.140	3.56
1%	-40	1.900	48.5	1.770	45.0	0.065	1.7	1.682	42.7	0.100	2.8		-	_	_	1.610	40.9	0.145	3.68
2	50	2.375	00.3	2.245	57.0	0,065	1.7	2.157	54.8	0.109	2.8	-	-	-	-	2.067	52.5	0.154	3.91
2%	65	2.875	78.0	2,709	68.8	0.083	2.1	2.635	66.9	0.120	8.0				_	2.469	62.7	0.203	5.16
3	80	3,500	88.9	5.554	84.7	0.085	2.1	3.260	82.8	0.120	3.0		-	-	_	3.068	77.9	0.216	5.49
3%	90	4.000	101.6	3.834	97.4	0.083	2.1	3.760	95.5	0.120	3.0	-	_	-	_	3.548	90.1	0.225	5.74
4	199	4.500	114.5	4.854	110.1	0.085	9.1	4.250	108.2	0.120	8.0	-	_	_	_	4.026	107.%	0.257	6.02

364


EQUIVALENT PIPE LENGTH - TABLE 27.2.3.1.1

Equivalent pipe length is the friction loss of a fitting expressed in pipe length.

					E	nings and	Valves Exp	pressed in l	Equivalent	Feet (Meter	s) of Pipe				
	½ in.	¾ in.	1 in.	1% in.	1½ in.	2 in.	2½ in.	3 in.	3½ in.	4 in.	5 in.	6 in.	8 in.	10 in.	12 in.
Fittings and Valves	(15 mm)	(20 mm)	(25 mm)	(S2 mm)	(40 mm)	(50 mm)	(65 mm)	(80 mm)	(90 mm)	(100 mm)	(125 mm)	(150 mm)	(200 mm)	(250 mm)	(300 mm
45°elbow	-	1 (0.3)	1 (0.3)	1 (0.3)	2 (0.6)	2 (0.6)	3 (0.9)	3 (0.9)	3 (0.9)	4 (1.2)	5 (1.5)	7 (2.1)	9 (2.7)	11 (3.3)	13 (4)
90°standard elbow	1 (0.3)	2(0.6)	2 (0.6)	3 (0.9)	4(1.2)	5 (1.5)	6(1.8)	7 (2.1)	8 (2.4)	10 (3)	12 (3.7)	14 (4.3)	18 (5.5)	22 (6.7)	27 (8.2
90°long-turn elbow	0.5 (0.2)	1 (0.3)	2 (0.6)	2 (0.6)	2 (0.6)	3 (0.9)	4 (1.2)	5 (1.5)	5 (1.5)	6 (1.8)	8 (2.4)	9 (2.7)	13 (4)	16 (4.9)	18 (5.5
Tee or cross (flow turned 90°)	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)	8 (2.4)	10 (3)	12 (3.7)	15 (4.6)	17 (5.2)	20 (6.1)	25 (7.6)	30 (9.1)	35 (10.7)	50 (15.2)	60 (18.5
Butterfly valve	-	-	-	-	-	6 (1.8)	7 (2.1)	10 (3)	-	12 (3.7)	9 (2.7)	10 (3)	12 (3.7)	19 (5.8)	21 (6.4
Gase valve	-	-	-	-	-	1 (0.3)	1 (0.3)	1 (0.3)	1 (0.3)	2 (0.6)	2 (0.6)	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Vane type flow switch			6 (1.8)	9 (2.7)	10 (3)	14 (4.3)	17 (5.2)	22 (6.7)	-	30 (9.1)	-	16 (4.9)	22 (6.7)	29 (8.8)	36 (11)
Swing check*	_	_	5(1.5)	7(2.1)	9 (2.7)	11 (3.3)	14(4.3)	16 (4.9)	19(5.8)	22(6.7)	27 (8.2)	32 (10)	45 (14)	55 (17)	65 (20)

366

367

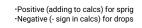
EQUIVALENT PIPE LENGTH

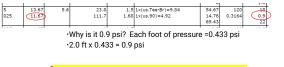
Flexible hose friction loss data

FlexHead Model #	Internal I.D.	Outlet Orifice Size	Hose Assembly Length	Maxim 90-deg 3" – UL	of ree Be		Maximum Eq Length of Sch Nominal 1in. I Pipe, 1	iedule 40, Diameter
	in	in (cm)	ft (cm)		175pai	300pci	FM	UL
2024, 2024H	1	1/2 (1.27)	2 (60.96)	3	1	2	18.4	11
2036, 2036H	1	1/2 (1.27)	3 (91.44)	3	2	3	26.6	16
2048, 2048H	1	1/2 (1.27)	4 (121.92)	4	3	4	30.3	24
2060, 2060H	1	1/2 (1.27)	5 (152.4)	4	4	4	35.8	29
2072, 2072H	1	1/2 (1.27)	6 (182.88)	4	4	4	45.6	35

Image courtesy of ASC Engineered Solutions

368


• Bends are too tight



369

SPRIG AND DROP LENGTH

1) Look that sprigs are add (or subtracted)

Northgate calculations

NFSA

370

C-FACTOR Look for C-factor changes in aboveground and underground C Factor Pf per ft 0.123 0.123 0.0013 Northgate calculations

NFSA

371

C-FACTOR - TABLE 28.2.4.8.1 HAZEN-WILLIAMS C VALUE

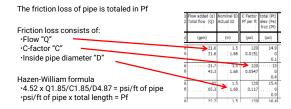
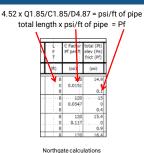

Pipe or Tube	C Value*
Unlined cast or ductile iron	100
Black steel (dry systems including preaction)	100
Black steel (wet systems including deluge)	120
Galvanized steel	100
(dry systems including preaction)	
Galvanized steel (wet systems including deluge)	120
Plastic (listed) all	150
Cement-lined cast- or ductile iron	140
Copper tube, brass or stainless steel	150
Asbestos cement	140
Concrete	140

Image courtesy of NFPA

372

WHAT IS "FRICTION LOSS"?



373

©National Fire Sprinkler Association 2022

Northgate calculations

HAZEN WILLIAM = FRICTION LOSS

NFSA

374

HOSE STREAM AND DURATION

Summary Sheet

Hose Streams (gpm)

FI	ow	Ana	lysis

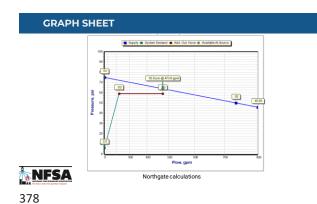
250

Design Areas										
Design Area Name	Calc. Mode (Model)	Occupancy			Pressure Ø Source	Min. Density	Min. Pressure	Min. Flow	Calculated Heads	Hose Streams
			(ftº)	(gpm)	(psi)	(gpm/ft²)	(psi)	(gpm)	#	(gpm)
1	Demand (HW)	ORD 2	1080	473.8	Required 59.1	0.2	14.9	21.6	10	250
	Design Area	Design Area Name (Model)	Design Area Name (Model) Occupancy	Design Area of Area of Application Name (Hodel) Occupancy Area of Application (R ²)	Design Area Name Calc. Hode (Hodel) Occupancy Area of Application Total Water (h*) (h*) (gpm) (gp	Design Area Name Calc. Mode (Model) Occupancy Area of Application Total Water Pressure 0 0 (m) (ggm) (m) (ggm) (m) (ggm) (ggm)<	Design Area Name Calc. Mode (Model) Occupancy Area of Application Tetal Water Pressure Source Min. Density Image: Application (m) (gm) (gm)<	Design Area Name Calc: Model Occupancy Area of Application Total Water Pressure Source Min. Design Source Min. Pressure 0 (ft) (gph) (gph) (gph) (gph) (gph)	Design Area Name Calc. Model Occupancy Area of Application Tetal Water Possure 0 Hitt. Hitt.	Design Area Calc. Mode Occupancy Area of Application Tetal Water Source Persoure Min. Min. Min. Pressure Hin. Pressure Calculated Heads Image: Company Area of Application (pm) (pm) (pm) Pressure Prior Hin. Calculated Heads Image: Company Area of Application (pm) (pm) (pm) (pm) (pm) Image: Company Area of Heads Image:

Northgate calculations

376

CALCULATION PATH


From most remote sprinkler to the water source.

318	Worksheet analysis
319	Node tags
320	Pressure
321	K-factor
322	Flow
323	Pipe diameters
324	Pipe lengths
	Equivalent pipe length for
325	fittings
326	Sprig and drop lengths
327	C-factor
328	Equipment friction losses
329	Hose stream and Duration
330	Calculation path

NFSA hydraulic review checklist

377

SUMMARY

- Apply the requirements of plans examination according to NFPA 13, building and fire codes.
- Discussed the importance of a systematic review process.
 Identified the documents required for a complete plan review process.
- Evaluated the hydraulic calculations presented with a set of working plans submitted for review and approval.

399

QUESTIONS?

John Swanson, CFPS swanson@nfsa.org Codes and Standards Specialist

400